我们将自动辩护的机器学习的想法扩展到动态处理方案,并将其更普遍地扩展到嵌套功能。我们表明,可以根据递归riesz的代表表征嵌套平均回归的递归riesz代表来重新说明动态治疗方案的多重强大公式。然后,我们应用递归RIES代表估计学习算法,该学习算法估算偏低的校正,而无需表征校正术语的外观,例如,逆向概率加权术语的产物,如先前在双重稳健估计上所做的那样在动态状态中。我们的方法定义了一系列损失最小化问题的序列,其最小化是偏见校正的误解器,因此规避了解决辅助倾向模型的需求,并直接优化目标降低偏见校正的平均平方误差。我们为动态离散选择模型的估计提供了进一步的应用。
translated by 谷歌翻译
我们推出了一般,但简单,尖锐的界限,用于广泛的因果参数的省略可变偏置,可以被识别为结果的条件期望函数的线性功能。这些功能包括许多传统的因果推断研究中的调查目标,例如(加权)平均潜在结果,平均治疗效果(包括亚组效应,例如对处理的效果),(加权)平均值来自协变态分布的转变的衍生品和政策影响 - 所有是一般的非参数因果模型。我们的建设依赖于目标功能的riesz-frechet表示。具体而言,我们展示了偏差的绑定如何仅取决于潜在变量在结果中创建的附加变型以及用于感兴趣的参数的RIESZ代表。此外,在许多重要病例中(例如,部分线性模型中的平均治疗效果,或在具有二元处理的不可分配模型中),所示的界定依赖于两个易于解释的数量:非参数部分$ r ^ 2 $(Pearson的相关性与治疗和结果的未观察变量的比例“。因此,对省略变量的最大解释力(在解释处理和结果变化时)的简单合理性判断足以将整体界限放置在偏置的尺寸上。最后,利用脱叠机器学习,我们提供灵活有效的统计推理方法,以估计从观察到的分布识别的界限的组件。
translated by 谷歌翻译
感兴趣的许多因果和政策效应都是由高维或非参数回归函数的线性功能定义的。 $ \ sqrt {n} $ - 对目标对象的一致且渐近地正常估计需要偏见,以减少正则化和/或模型选择对感兴趣对象的影响。通常,通过将校正项添加到功能的插件估计器中来实现,从而导致属性,例如半参数效率,双重鲁棒性和Neyman正交性。我们基于自动学习使用神经网和随机森林的Riesz表示的自动偏差程序。我们的方法仅依赖于黑框评估Oracle访问线性功能,并且不需要其分析形式的知识。我们提出了一种多任务神经网络偏见方法,具有随机梯度下降最小化的Riesz代表和回归损失,同时共享这两个函数的表示层。我们还提出了一种随机森林方法,该方法了解Riesz函数的局部线性表示。即使我们的方法适用于任意功能,我们在实验上发现它的性能与Shi等人的最先进的神经网状算法相比。 (2019)对于平均治疗效果功能的情况。我们还使用汽油需求的汽油价格变化的半合成数据来评估我们的方法,即通过连续处理估算平均边缘效应的问题。
translated by 谷歌翻译
本文涉及根N的可行性和手段,始终估算高维,大约稀疏回归的线性,均方连续功能。这些对象包括各种有趣的参数,例如回归系数,平均衍生物和平均治疗效果。我们给出了回归斜率和平均导数的估计量的收敛速率的下限,并发现这些界限大大比低维,半参数设置大。我们还提供了依据的机器学习者,这些学习者在最小的稀疏条件或速率双重鲁棒性下是一致的。这些估计值对在先前已知的更一般条件下保持root-n一致的现有估计值有所改善。
translated by 谷歌翻译
Simulating rigid collisions among arbitrary shapes is notoriously difficult due to complex geometry and the strong non-linearity of the interactions. While graph neural network (GNN)-based models are effective at learning to simulate complex physical dynamics, such as fluids, cloth and articulated bodies, they have been less effective and efficient on rigid-body physics, except with very simple shapes. Existing methods that model collisions through the meshes' nodes are often inaccurate because they struggle when collisions occur on faces far from nodes. Alternative approaches that represent the geometry densely with many particles are prohibitively expensive for complex shapes. Here we introduce the Face Interaction Graph Network (FIGNet) which extends beyond GNN-based methods, and computes interactions between mesh faces, rather than nodes. Compared to learned node- and particle-based methods, FIGNet is around 4x more accurate in simulating complex shape interactions, while also 8x more computationally efficient on sparse, rigid meshes. Moreover, FIGNet can learn frictional dynamics directly from real-world data, and can be more accurate than analytical solvers given modest amounts of training data. FIGNet represents a key step forward in one of the few remaining physical domains which have seen little competition from learned simulators, and offers allied fields such as robotics, graphics and mechanical design a new tool for simulation and model-based planning.
translated by 谷歌翻译
肥胖是一种全球流行病,每年至少有280万人死亡。这种复杂的疾病与重大的社会经济负担有关,工作生产率降低,失业和其他健康差异(SDOH)差异有关。目的:这项研究的目的是使用地理空间机器学习方法研究SDOH对美国谢尔比县成年人肥胖症患病率的影响。肥胖症患病率是从公共可用的CDC 500城市数据库中获得的,而SDOH指标是从美国人口普查和USDA提取的。我们使用Getis-ord Gi*统计数据和校准多个模型研究了肥胖症患病率模式的地理分布,以研究SDOH与成人肥胖之间的关联。此外,使用无监督的机器学习来进行分组分析,以研究肥胖症患病率和相关SDOH指标的分布。结果表明,在谢尔比县内经历了成年肥胖症高的社区中,很高的社区。在人口普查区中,家庭收入中位数以及黑人,房屋租房者的百分比,居住在贫困水平以下的人,五十五岁或以上,未婚和未投保的人与成人肥胖症患病率有显着关联。分组分析表明,处境不利的社区之间的肥胖症患病率差异。需要更多的研究来检查地理位置,SDOH和慢性疾病之间的联系。这些发现描述了处于不利地位的社区内肥胖症的患病率明显更高,并且可以利用其他地理空间信息,以提供有价值的见解,以告知健康决策和干预措施,从而减轻肥胖症患病率的危险因素。
translated by 谷歌翻译
本文探讨了多条件对抗网络用于SAR-EO图像翻译。以前的方法仅在输入SAR上条件对抗网络。我们表明,结合多种互补方式,例如Google Maps和IR可以进一步改善SAR-EO图像翻译,尤其是在保留人造物体的锋利边缘方面。我们证明了我们的方法在包括SEN12MS,DFC2020和SpaceNet6在内的各种数据集中的有效性。我们的实验结果表明,与仅在配对SAR和EO数据中训练的模型相比,互补方式提供的其他信息可改善SAR-EO图像翻译的性能。据我们所知,我们的方法是第一个利用多种方式来改善SAR-EO图像翻译性能。
translated by 谷歌翻译
卷积神经网络已彻底改变了视力应用。但是,有一些图像域和表示,无法通过标准CNN(例如球形图像,超像素)来处理。这些数据通常使用针对每种类型的网络和算法进行处理。在这项工作中,我们表明可能并非总是有必要使用专门的神经网络在此类空间上操作。取而代之的是,我们介绍了一个新的结构化卷积操作员,该操作员可以复制2D卷积权重,将已经训练的传统CNN的功能转移到我们的新图形网络中。然后,该网络可以在任何可以表示为位置图的数据上运行。通过将非线性数据转换为图,我们可以在这些不规则的图像域上应用这些卷积,而无需在大型域特异性数据集上进行训练。对于各种此类数据表格,证明了转移预训练的图像网络进行分割,风格化和深度预测的结果。
translated by 谷歌翻译
我们介绍了Smianile过滤仿制学习(QFIL),这是一种用于离线强化学习的新型政策改进操作员。QFIL通过在脱机数据集的过滤版本上运行模仿学习来执行策略改进。过滤过程删除了$ s,其估计的q值低于给定分位于通过从行为策略采样动作引起的值的推送分布。推轴Q分布和产生的值函数分位数的定义是我们方法的主要贡献。我们证明QFIL为我们提供了一种安全的政策改进步骤,函数近似,分位式的选择提供了自然的超参数,以折衷偏差和改进步骤的差异。凭经验,我们执行一个合成实验,说明QFIL如何有效地进行偏差方差权衡,并且我们看到QFil在D4RL基准上表现良好。
translated by 谷歌翻译
大多数前往离线强化学习(RL)的方法都采取了一种迭代演员 - 批评批评,涉及违规评估。在本文中,我们展示了使用行为政策的政策Q估计来令人惊讶地执行一步的Q估计,从而简单地执行一个受限制/正规化的政策改进的步骤。该一步算法在大部分D4RL基准测试中击败了先前报告的迭代算法的结果。一步基线实现了这种强劲的性能,同时对超公数更简单,更强大而不是先前提出的迭代算法。我们认为迭代方法的表现相对较差是在违反政策评估中固有的高方差,并通过对这些估计的重复优化的政策进行放大。此外,我们假设一步算法的强大性能是由于环境和行为政策中有利结构的组合。
translated by 谷歌翻译